222 private links
There is currently a support for go, kotlin, python and typescript. It is very interesting, because it takes over one reason why ORMs are used (with migration handling and security).
The documentation is available at https://docs.sqlc.dev/en/latest/
and how to batch to optimize DELETEs
The perfect prisma alternative?
A (somewhat opinionated) list of SQL tips and tricks that I've picked up over the years in my job as a data analyst.
Okay
A query builder. It can be coupled to Prisma schema for better performance.
As much as I dig into it, I find raw SQL better (or with a SQL builder).
Le NoSQL est également plus adaptée pour le développement agile car les données ne sont pas structurées pendant les itérations.
Le SQL a réussi à traverser les âges car: il est simple, il est rapide et il est stable.
Les avantages de SQLite:
- facilité d'administration: tout le contenu peut être visualisé par lecture d'un fichier.
- facilité de déploiement: il est possible de pousser les BDD en production et de les migrer
- simplicité: sqlite est intégré avec tous les langages de programmation
- capacité: une BDD peut contenir plus d'un million de TB
Ses désavantages:
- requêtes concurrentes:
- les types de données limitées: NULL, INTEGER, REA L, TEXT, BLOB. Il n'y a pas de BOOL ni de dates.
- les données sont faiblement validées: "abcd" dans INTEGER o 20 charactères dans VARCHAR(5) passent.
- la sauvegarde des données est à faire soit même
- l'hébergement n'est pas possible avec tous les hébergeurs
Create webpages from SQL requests
13 examples or applications
Eḿbed SQL examples in a web page. It uses a browser-compatible compiled sqlite under the hood .
The deficiencies of SQL to use it as frontend databases:
- Standard SQL doesn’t support nesting
- SQL syntax is verbose and non-uniform.
- SQL’s scalar expression language is weird and limited
- SQL doesn't have good tools for metaprogramming and changing the shape of a query at runtime
Maybe useful someday
The use of SQL within streaming systems opens up a new chapter in the story of SQL within the data domain.
Machine learning needs data and a lot of processing. Thus the data needs to be efficiently stored and retrieved
“Every decade, another hyped-up database technology comes along that claims SQL is terrible, slow, or impractical,” Pavlo says. “Over time, the conventional wisdom comes back to realizing that [SQL] is a good idea, and everyone returns to it.”
Reference to NoSQL, document-based database, graphs with nodes and edges.
SQL table expressions are somewhat similar to functions in a regular programming language — they reduce the overall complexity.
You can write an unreadable sheet of code, or you can break the code into understandable individual functions and compose a program out of them.
You can build a tower of nested subqueries, or you can extract them into CTEs and reference from the main query.There is a myth that “CTEs are slow”. It came from old versions of PostgreSQL (11 and earlier), which always materialized CTE — calculated the full result of a table expression and stored it until the end of the query.
Ok. There are some rules:
- CTE runs on every request
- CTE splits the query code into multiple chunks
- instead of subquery, always use CTE for clarity